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A method of solving Fredholm integral  equations of the f i r s t  kind is descr ibed ,  which is based 
on the a pr ior i  knowledge of the a r rangement  of ex t rema and inflection points of the des i red  
solution and permi t s  taking account of the fundamental qualitative regular i t ies  inherent in the 
exact solution of the problem.  

1 ~ The mathemat ical  theory of the solution of incor rec t ly  formulated problems has been developed 
sufficiently well at this t ime [1, 2]. The main point of this theory is the use of a pr ior i  information about the 
accuracy  of giving the entrance data and (or) about the des i red  solution to some extent. The nature  of this 
information can be twofold: quantitative or  qualitative.  As a rule ,  the major i ty  of methods use quantitative 
information about the accuracy  of giving the entrance data and quite genera l  information about the "smoothnes s" 
of the solution (the Tikhonov regular iza t ion method, the residual  method). The distinctive pecul iar i ty  of the 
Ivanov method of quasisolutions is the possibi l i ty of using not only information of the type mentioned, but also 
just  qualitative information associa ted  with the a pr ior i  representa t ions  of the behavior  of the des i red  solution. 
As a rule ,  an objective basis for  the presence  of such information is intuitive considerat ions aboutthe s impl i c -  
ity of the s t ruc ture  of the des i red  solution as well as cer ta in  genera l  conceptions about the behavior of the 
physical  p rocess  being studied. The f o r m e r  a re  related to the natural  tendency of the r e s e a r c h e r  to identify 
the most  important  and essent ial  i tems in the mathemat ica l  model and can also be dictated by fully defined e s -  
thetic considerat ions .  

The la t ter  appear, for example,  when a perfect ly evident fact in the study of the brightness distr ibution 
of a s ta r  is the drop in intensity f rom the center  of the s ta r  to its edges if, cer ta in ly ,  the s t a r  is unitary,  and 
the presence  of two maxima if the s t a r  is b inary.  

Let us a ssume that the phenomenon being studied is charac te r i zed  quantitatively by the function u = u (x), 
a _< x _< b. Such quantitative charac te r i s t i c s  as the variat ion in the function u(x), the r o o t - m e a n - s q u a r e  value 
of its k- th  der ivat ive ,  e t c . ,  which are  often used in solving incor rec t  p rob lems ,  can be taken as a :measure of 
its "simplici ty.  " It is a lso well known that the behavior of a function is modeled sufficiently effectively on an 
intuitive level if the possible a r rangement  of its cha rac te r i s t i c  points,  ex t remum points,  and the change in c u r -  
vature is given. It is hence cons ide red tha t ,  on the whole, the function will behave in a natural  manner ,  i . e . ,  
is s ingle-valued,  h a s n o  reentrant  points, is sufficiently smooth ,  and there fore ,  can be drawn with one 
"s t roke"  of the pen. Such a c lass  of s imple functions can be given if sections of their  monotonicity and convexity 
a re  indicated. The c lass  of smooth functions with L -- 1 sections of monotonicity can be written by the condi-  
tions 

M = { u ( x ) : ( - - l ) I + " u  ' (x )~O,  x i ~ x ~ x i + l ,  i =  1,2, . . . ,  L - - l } ,  

where xi, i =1 ,  2, . . . ,  L are  ex t rema of the function u(x), a = x  1 < x 2 < . . .  < x L =b  and the pa ramete r  l ,  
equal to 1 or  2, governs  the nature of the monotonicity in the f i r s t  section.  It is hence assumed that M = M 
(x2 , . . .  ,XL_l; l ,  L), i . e . ,  the number  of ex t rema,  the al ternat ion of sections of growth and decrease  in the 
function, and also the a r rangement  of the inner  ex t rema  can vary .  Great  detail  in the c lass  of functions being 
considered will be achieved if sections with curva ture  of constant sign are  a lso extracted.  We then a r r ive  at 
the c lass  
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v = {u (x) : ( - -  1)o+'u" (x) ~< 0, ; j  < x < x~§ i --  1,2 . . . .  ; ~ ' -  1}, 

where xj, j = 2, 3, . . . ,  N - -  1 a re  inflection points of the function u(x); a = x 1 < x 2 < . . .  < x N = b; the p a r a m -  
e te r  v, equal to I or  2, governs  the sign of the curva ture  in the f i rs t  sect ion;  and N -- 1 is the number  of 
curvature  sect ions of constant sign. It is a s sumed  that V = V(x 2 . . . .  , xN_l; v, N). 

T h e n o d e s  x i and xj should sa t i s fy  the following matching conditions. If x I < x 2 < x2, then it is neces sa ry  
that  x 2 < x 3 < x3, _. . . ,  XL_ 2 < XL-1 < XL-1, but a bhange in the curvature  can be in the last sect ion [XL_l, b] 
(and t h e n x L _  l < x  L < b a n d N  = L + I )  or  cannot be (and t h e n x  L = b a n d N  =L) .  I f x  2 < x  2 < x z ,  i . e . ,  the c u r -  
vature is constant  in the sect ion [xl, x2] , then it is neces sa ry  that x 3 < ~3 < x4, . . . . .  ~L-1 < XL, and XL_ 1 = XL, 
i . e . ,  N = L --  1, in the las t  sect ion in the case  of no change in curva ture ,  or  XL_ 1 < XL-1 < XL in the case of 
a change and then ~L = b and N = L. 

These conditions co r respond  to intuitive considerat ions  about the "simplici ty"  of the behavior of a ftmc- 
tion f rom the c lass  under  considerat ion and a re  rea l ized in a significant number  of applied problems.  

Methods of solving Fredholm in tegra l  equations of the f i rs t  kind 

b 

Ku-~ , t ' k ( x ,  y )u (y )dy  = f(x),  c ~ x ~ d ,  
(t 

where f (x) e L 2 [c, d], the kernel  k(x, y) E L 2 (~2), ~2 = [c, d] x [a, b] with the implicat ion of the conditions M and 
(or) V we will cal l  descr ip t ive  methods of regular iza t ion [3]. Namely,  we consider  the following mathemat ical  
p rog ramming  problem:  Find the function u*(y) which is an approximate solution of the problem 

llKu - -  [IIL, - -  min, 
u ~ D  

where D = M, V or  MAV. The kernel  and right side of the equation under considerat ion can hence be given 
approximately .  

A s ingular i ty  of the descr ip t ive  regular iza t ion  method is the descr ipt ion of an admiss ible  set of functions 
by the extract ion of cha rac te r i s t i c  points (extremal points and the change in sign of the curvature)  and the a s -  
sumption of "s implic i ty"  of the s t ruc tu re  of the des i red  solution in the sense mentioned above. 

It is known [4] that the conditions M stabil ize approximate  solutions in a uniform met r i c .  As Samarin  
1Lus recent ly  shown, the implicat ion of convexity conditions a s su re s  stabil ization of the f i rs t  o rde r  of smooth-  
ness ,  i . e . ,  uni form convergence of the approximations together  with the der ivat ives  holds under definite con- 
dit ions.  

It is  easy  to see that numer ica l  d i sc re t iza t ion  of the problem resul ts  in a quadratic p rogramming  prob-  
lem with specif ic  l inear  cons t ra in ts .  In this paper  the principal  attention is paid to the construct ion of effec-  
tive numer ica l  a lgor i thms for  the solution of the d i sc re t ized  problem with its specif ics taken into account,  and 
the i r  "operat ion" verif ied in a s e r i e s  of model  p rob lems .  We are  hence also interested in the quality of the 
approximation,  defined by thei r  cha rac t e r  i tself .  Let us note that the quality of the approximations is de t e r -  
mined not so much by the i r  a c c u r a c y  as by the appearance  of fundamental regular i t ies  inherent  in the exact 
solution, and depends g rea t ly  on the esthet ic  percept ion of these approximat ions .  

h =  2 ~ Let  us go over  to a d i sc re te  formulat ion of the problem.  Let us introduce the mesh  of nodes Wx 
{xi, i =1 ,  m} on a segment  [c, d] and co h ={Yi, J = 1 ~ }  on a segment  [a, b]. Assuming u{yj) = u  j ,  we can 
write 

K u ~  q~ (x, yj) u~ = f (x), 
1=1 

where qj a re  quadra ture  coefficients (the t rapezoid  formula  later) and sett ing x = x i here ,  we a r r ive  at the 
following collocation conditions: 

A;~ L 

where A is  a m a t r i x  o~ o rde r  m x n w i th  elements a i j  = q jk (x i ,  y j ) ,  the vector  u = (Ul, u2, . . . ,  Un), and the 

vec tor  f = (fl, f2 . . . . .  fm) ,  f i  = f = f ( x i ) -  We select  

(I) 
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Fig.  1. Results of a numer ica l  computation 
of the f i rs t  model problem with the e r r o r s  

k -  5%, f  - 3%1 Uexact; 2) Uapprox for  Pi = 
0, i = 1.40 without taking account of con-  
s t ra ints  13) UapproxfOr Pi = 0, i = 1.40 with 
the conditions M taken into account; 4) Uapprox 
for Pi = 1, i = 1.40 taking account of the con-- 
ditions M. 

, ~  f \ r tl 
. ~., 

r  r f ] - - -2_ ,P , t~a , ,u , - - f i J2 : i lAu- - l , l~ ,  
i : l  1=1 

as the ta rge t  functional,  where Pi > 0 a re  cer tain weight coefficients.  

Writing the monotonicity and convexity conditions for d iscre te  functions u and re ta in ing the  previous nota-  
tion for  them, we a r r ive  at the necess i ty  to solve the following mathemat ical  p rogramming  problem: 

r Iu] --  min (2) 
u~D 

with specific constraints  of the l inear  inequality type. 

We chose the method of the project ion of conjugate gradients  as the numerica l  a lgori thm to solve the 
problem (2). We were hence guided by the known fact that this method, among the quasi-Newtonian ones, r e -  
sults in a solution for  quadratic functionals without constra ints  in a finite number  (not more  than n) s teps ,  
equal to the rank of the mat r ix  A~ In this case we apparently have a situation which does not agree  with but is 
close to that when the rank of the problem is in pract ice  substantially less than n, i . e . ,  is quite small .  

The following reasoning is the foundation for this .  Every  regular izat ion method pract ical ly  resul ts  in a 
reduction in the influence of the "high-frequency" components of the solution in some special  bas is ,  which is 
equivalent to replacing the initial problem by one s imi la r  but a l ready degenerate problem with a low rank,  and 
it is  known from prac t ice  that the solution of degenerate problems is real ized numer ica l ly  more  effectively 
than the solution of the so-cal led  poorly specified problems of high dimensionali ty.  The numer ica l  experiments  
presented below agree  well with these considerat ions since the actual number of i terat ions is not very  large.  

Another considerat ion which guided us is the diminution in the calculation t ime and the r i se  in accuracy  
of the calculations because of the effective real izat ion of the project ion operation i tself .  We succeeded in 
reaching such a t a rge t  for  sets D of M or V type by applying an algori thm developed for  these cases  by one of 
the authors [5, 6], and for  the set D = Ylfq V by success ive  utilization of additional information [3]. 

Let us present  the computational formulas  for  the method of project ion of conjugate gradients  for  the 
problem (2). 

Let u~ be the initial approximation.  The i tera t ion process  is constructed by means of the formulas  

u,+~ = ~ o  ( u  s - -  a , g  ~ ) ,  s = O, 1, 2 . . . . .  

gO _ gradqbiu0], gs = grad r  ~] _l],gs-l, s = l, 2 . . . . .  (3) 

I~, = (grad qb [u s ], grad qb [uS-l] - -  grad r [u ~ ]) 

[[grad qb [uS-I ][[z 

Here ~D is the project ion operat ion on the set D 

[~D (Z) - -  Z 1 = minim - -  zll. 
w ~ D  

The magnitude of the descent  step a s is selected f rom the condition of a monotonic decrease  in the ta rge t  func-  
tional 

cp [u  s - -  a ,  gSl  ~< r [u~l . (4) 

The value 
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F i g .  2. R e s u l t s  of a n u m e r i c a l  c o m p u -  
t a t i o n  of t he  s e c o n d  m o d e l  p r o b l e m  wi th  
t he  e r r o r s  k -  3 % , f  - 2 % :  1) Uexact ;  2)' 
Uapprox  f o r  Pi = 0, i = l~4b wi thout  t a k -  
ing  a c c oun t  of c o n s t r a i n t s ;  3) UapproxfOr  
Pi = 0, i = 1.40 wi th  the  cond i t i ons  M 
t a k e n  in to  accoun t ;  4) U a p p r o x  f o r  Pi =1 .5 ,  
i = 1 .38 ,  Pi = 0.5,  i = 39 .40  wi th  the  c o n d i -  
t i o n s  M t a k e n  in to  a c c o u n t .  

~: = (grad r [uSl, gs ) ,  
2 ( A ' P A g  s,g3) 

@ [u s - -  a :g  s ] = rain r [u s - -  a g  ~ 1, 
r  

can  be u s e d  t o  d e t e r m i n e d  ce s by s e t t i n g  a s = (~s* in the  c a s e  of c o m p l i a n c e  with cond i t ion  (4) and s e t t i n g  ~ s  = 

a s * / 2 k  o t h e r w i s e  (k = 1 ,  2 ,  . . . ) .  

The  g r a d i e n t  of t he  t a r g e t  f u n c t i o n a l  in  the  c o n s t r u c t i o n  of  the  i t e r a t i o n  p r o c e s s  (3) by the  con juga te  g r a -  

d i e n t s  m e t h o d  in a f i n i t e - . d i m e u s i o n a l  a n a l o g  of the  s p a c e  L 2 i s  

grad qb [u] = 2 ( A ' P A u  - -  A 'P[) ,  (5) 

w h e r e  the  p r i m e  d e n o t e s  t h e  t r a n s p o s e ,  and  the  m a t r i x  i s  P = d i ag (p  1, P2 . . . .  , Pm)- 

If  i t  i s  known a p r i o r i  t ha t  the  s o l u t i o n  p o s s e s s e s  f i r s t - o r d e r  s m o o t h n e s s ,  fo r  e x a m p l e ,  then  an i n c r e a s e  
in  t he  a c c u r a c y  and a r i s e  in  qua l i t y  can  be a t t a i n e d  by a p p l y i n g  the  con juga te  g r a d i e n t s  me thod  in a f i n i t e - d i -  

m e n s i o n a l  a n a l o g  of t he  s p a c e  W~. The  g r a d i e n t  of t h e  func t i ona l  4,[u] i s  then  

grad @ [u] = (qbl, (~2 . . . . .  r 

w h e r e  r (j = 1,  n) a r e  d e t e r m i n e d  f r o m  t h e  s y s t e m  of l i n e a r  equa t i ons  

P' ~ +  _ (1 + p' P ' - ' t  PJ- '  --yj --yj + YJ / ~ ' t +  ~ P J - l = - - q b l '  ]--: 1,n, 

which  can  be s o l v e d  by  the  f a c t o r i z a t i o n  m e t h o d .  H e r e  ~j (j = 1,  n) a r e  the  c o m p o n e n t s  of the  v e c t o r  (5), Tj > 
0 and pj _ 0(j = 1, n) a r e  g i v e n  n u m b e r s  r e l a t e d  to  a s p e c i f i c  n o r m a l i z a t i o n  of W~. 

3 ~ To  v e r i f y  the  e f f i c i e n c y  of t he  me thod  be ing  p r o p o s e d ,  a p r o g r a m  was c o m p i l e d  in FO RT RAN fo r  t he  
B I ~ M - 6  c o m p u t e r  and n u m e r i c a l  e x p e r i m e n t s  t o  s o l v e  m o d e l  p r o b l e m s  with  a known e x a c t  s o l u t i o n  w e r e  p e r -  

f o r m e d .  

The  func t ion  Uexact(Y) = 1 - - y  2 wi th  

k (x, y) ~- 1 / (1 + (x - -  y)z), 

V (x) = (2 - -  x z) (arctg (1 - -  x) + arctg (1 + x)) - -  2 - -  x In 
1 I -  (1 - - x )  z 
1 + (1 q- x) z ' 

was  t a k e n  a s  t h e  e x a c t  s o l u t i o n  in  t he  c l a s s  of p i e c e w i s e - m o n o t o n i e  func t ions  fo r  t he  f i r s t  m o d e l  p r o b l e m  and 
Uexact(Y } - s l n  l r / 2 y  with  k (x, y) = (x--y) 2, f ( x )  = - - 1 6 x / ~  2 was t a k e n  fo r  t he  s e c o n d  m o d e l  p r o b l e m .  The  
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Fig. 3. Results  of a numer ica l  computa-  
tion of the third model problem: 1) Uexact; 
2) Uapprox with Pi = 0, i = 1.40 taking ac -  
count of the conditions V. 

computations were executed on uniform meshes  wh~ [--2.2],  wh~ [--1.1] with the steps h x = 0.1, hy = 0.05, 
2k J . . 

respec t ive ly .  The function u ~ -- 0 was taken as the initial approximation.  An explicit fo rm of the pro jec tor  
on the set  of p iecewise-monotonic  functions descr ibed  in [6] was used in the project ion on M. To verify the 
stabil i ty of the method relat ive to e r r o r s  in the entrance data, computations were per formed with uniformly 
distr ibuted random perturbat ions of the kernel  k and the right side f .  

As follows f rom the resul ts  of computations presented in Figs .  1 and 2, taking account of the constraints  
M as well as the select ion of the met r ic  of the space (specifically, the p a r a m e t e r s  pj, j = 1, n -- 1) pe rmi t s  
obtaining an approximate solution sufficiently close to the exact solution. 

The function Uexact(Y ) = cos[(~/2)y] with k(x, y) = x --  y ,  f(x) = 4x/~,  xE [--2.2],  yE [-- l .  1], h x = 0.1, 
hy = 0.05 was taken as the exact solution for  the third model problem in the class  of convex functions.  The 
Solution of this problem is represented  in Fig. 3. 

Roughly, t en i t e ra t ions  are required for  agreement  of values of the functional 6[u] with 10 -7 accuracy  at 
two adjacent i terat ions  in each of the three  problems,  which cor responds  approximately to 1 rain of :B~SM-6 
computer  machine t ime (together with p rog ram translat ion) .  Cutting down the machine t ime should ]be achieved 
by taking the resul t  obtained af ter  a small  number of i terat ions by the method of conjugate gradients  without 
taking account of any cons t ra in ts ,  as the initial approximation in the method of descr ipt ive  regular izat ion.  

A di rec t  compar ison of Figs.  ! ,  2, and Fig.  3 shows that taking account of just  conditions of type M is 
not sufficient fo r  qualification of the approximations obtained as completely qualitative although the accuracy  
of the approximation is totally sa t i s fac tory .  The approximations in Figs.  I and 2 a re  "s tepwise ,  in nature 
and agree  completely with the deductions obtained in [6]. At the same t ime,  taking account of the conditions 
V resul ts  in a qualitative reproduct ion of the des i red  exact solution (Fig. 3). This deduction is probably not 
related to the par t i cu la r  examples considered,  but is sufficiently genera l  in nature.  

Let us note that improvement  in the percept ion of the approximations is also achieved in examining the 
conditions M when going over  to descent  according to the conjugate gradient  in some other  space which takes 
account of the smoothness  of the function des i red .  The same effect can be achieved if  it is taken into account 
that the descr ipt ive  regular izat ion method is ,  as is the method of quasisolutions genera l ly  [7], a lin~[t case of 
the Tikhonov method of regular izat ion 

llKu - -  ft12,. + allu <~' Ii~-. - -  min, 
u 6 ' D  

when the regular izat ion p a r a m e t e r  u > 0 is sufficiently smal l  but retains its influence as a stabilizing factor .  

An analysis  of the calculation expenditures,  the electronic computer  memory ,  and t ime needed to solve 
the problem of the descr ipt ive regular izat ion method shows that they are  commensura te  with the calculation 
expenditures needed to minimize f ini te-dimensional  quadratic problems without constra ints  by the conjugate 
gradient  method, and the re fore ,  the descr ipt ive regular iza t ion method is completely stiitable for  util:[zation in 
calculation prac t ice .  

The application of the descr ipt ive regular izat ion method is especial ly effective in the case  when the 
opera tor  K is single; i . e . ,  the approximation problem is solved in the set  of piecewise-monotonic functions. 

The fundamental hypotheses and deductions of the r e s e a r c h  are  ca r r i ed  over ,  without change, to non- 
l inear in tegral  equations a lso,  but as is seen f rom the above,  explicit ass ignment  of the opera tor  is not ab- 
solute. This permi t s  recommending the descr ipt ive  regular iza t ion method for  a broad c i rc le  of inverse  p rob-  
lems when the des i red  function is a function of one var iable .  The method of descr ipt ive  regular izat ion can be 
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used effectively in the mode of the method of t r ia ls  when the electronic computer has a display. A new kind 
of " r e s o l v e r , "  whose main elements are  an electronic computer performing the most routine part of the work, 
a display which permits operational analysis and decision making, and an operator-calculator  which forms a 
new model for  approbation on the basis of the data obtained, hence originates. 
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S O L U T I O N  OF t N V E R S E  H E A T - C O N D U C T I O N  

P R O B L E M S  ON S P E C I A L I Z E D  A N A L O G  C O M P U T E R S  

M. P .  K u z ' m i n ,  I .  M. L a g u n ,  
a n d  S.  V.  L a g u n  

UDC 536.24 

Recommendations on the application of specialized analog computers for the solution of inverse 
problems of heat conduction are  given. The presence of a zone of sensitivity delimiting the pos- 
sible location of a pr imary  information source is established. 

Inverse problems are  quite extensive in heat-  and mass - t rans fe r  processes .  This is explained pr imar-  
ily by the fact that measurement  of the parameters  of these processes  (temperature, heat-flux density, e tc . ,  
for  instance) in the range of high values under non-steady-state conditions is difficult, and a completely in- 
surmountable problem in a number of cases .  In such situations inverse problems are  the most acceptable 
method of solving these problems.  

Inverse problems of heat conduction are  used in thermal  power plants to establish the thermal  gasdynam- 
ic circumstances according to the results  of tempera ture  measurements ,  to determine uniqueness conditions, 
and for  machine design. In connection with the growing heat loads, the determination of the thermal  environ- 
ment in the high-temperature range, i . e . ,  the heat-flux density qs and the surface temperature  Ts ,  the tem- 
perature  of the gas s t ream Tg flowing around a solid, the coefficient of heat t ransfer  between the hot gas 
s t ream and the solid ~g, etc., according to the results  of temperature  measurements in the low-temperature �9 
range, is  a problem which must be solved in engineering. Inverse problems of heat conduction are  important 
in the design and construction of heat shields, in the prediction of the thermophysical propert ies of materials  
with a given operating range, etc.  

If the process of heat t ransfe r  between a mediumand a solid is considered, then depending on the loca- 
tion of the quantity to be determined inverse problems of heat conduction can be separated into three classes: 
internal,  external ,  and combined. We shall re fe r  such problems for which the parameters  (characterist ics)  
within the body or  on its surfaces are  determined as a resul t  of the solution to internal,  problems when the 
charac ter i s t ics  of the environment are  found to external,  and problems for which combinations of parameters  
of the f i rs t  two classes will be the subject of solution to the combined classes.  A diagram of the classifica- 
tion of inverse problems of heat conduction is shown in Fig. 1. 
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